If it's not what You are looking for type in the equation solver your own equation and let us solve it.
150.55d+335.4d^2-39.846=0
a = 335.4; b = 150.55; c = -39.846;
Δ = b2-4ac
Δ = 150.552-4·335.4·(-39.846)
Δ = 76122.6961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150.55)-\sqrt{76122.6961}}{2*335.4}=\frac{-150.55-\sqrt{76122.6961}}{670.8} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150.55)+\sqrt{76122.6961}}{2*335.4}=\frac{-150.55+\sqrt{76122.6961}}{670.8} $
| (x-22)+(2x-54)+(1/2x+11)=180 | | -2(x+8)=28 | | 3/4p-4=23 | | 5.3t=-15.9 | | (x-22)+(2x-54)+(.5+11)=180 | | 117.77d+335.4d^2-39.846=0 | | x+5x+4x-3=180 | | 1/5(a+10)=-1 | | (3x+55)=(8x+5) | | (x+4)+(4x-29)=180 | | 64=(4^5x)*16^x^2 | | 11/6y-13=-2 | | -3x^2+15x^2-48=0 | | -2x^2+30x-48=0 | | 3x+4=2×+6 | | 2x-5=8x+7-5x | | 139.37d+335.4d^2-34.93=0 | | 3x(x-6)-8x=-2+5(2x+1) | | 2x+5=2x+100 | | X^4-x^2-114=0 | | 12x+3=103 | | 10x=39.5 | | 10x-10=39.5-10 | | 9x=10+5+6x | | 2^(2x-1)=16 | | 2x-2=10-3- | | 3a+35=2a | | 10^-x=0.0347 | | 7+3y=60 | | 3-(z-8)=22 | | 4x+13x-6+0.75=7x+36-1.75 | | x(x-20)=180x= |